Project #6:Suppose that the cost function for a product is given by C(q)=0.05q2-10q+1000. The demand function for product is q=-5p+200.
Develop the average cost function and plot it.
Plot the demand curve.
Compute the demand elasticity when quantity equals to 20. Is the demand elastic?
Compute the marginal cost and evaluate it when q=20.
Develop the profit function.
Find the quantity that maximizes the total profit.
What is the price that maximizes the profit?
What is the maximum profit?
Report Organization
Problem Statement:
Describe the project you selected, how the team organized itself to complete the work, your approach to solve the questions and an outline of your results
Proposed Solution Methodology:
Write here answers to Questions
MATHEMATICA Output:
Add Mathematica output
Conclusions and Summary
Last Completed Projects
topic title | academic level | Writer | delivered |
---|
jQuery(document).ready(function($) { var currentPage = 1; // Initialize current page
function reloadLatestPosts() { // Perform AJAX request $.ajax({ url: lpr_ajax.ajax_url, type: 'post', data: { action: 'lpr_get_latest_posts', paged: currentPage // Send current page number to server }, success: function(response) { // Clear existing content of the container $('#lpr-posts-container').empty();
// Append new posts and fade in $('#lpr-posts-container').append(response).hide().fadeIn('slow');
// Increment current page for next pagination currentPage++; }, error: function(xhr, status, error) { console.error('AJAX request error:', error); } }); }
// Initially load latest posts reloadLatestPosts();
// Example of subsequent reloads setInterval(function() { reloadLatestPosts(); }, 7000); // Reload every 7 seconds });